
RAPID-ASR: Runtime ASR Parallelization and
Isolation on Mobile Devices

Chong Tang
University of Southampton

chong.tang@soton.ac.uk

Hao Dai
University of Southampton

h.dai@soton.ac.uk

Jagmohan Chuahan
University College London

jagmohan.chauhan@ucl.ac.uk

I. INTRODUCTION

On-device ASR is critical for privacy and real-time applica-
tions such as voice assistants and live translation. Frameworks
like TensorFlow Lite optimize static models via quantization
and operator fusion [1], but problems arise when using the
dynamic control flow and variable-length tensor of transformer
ASRs[2], which support multi-head attention and token pre-
diction [3]. Consequently, CPUs remain the most practical
inference engine, but their parallelism ability is overlooked.
RAPID-ASR bridges this gap by uniting runtime graph par-
titioning, branch-aware memory allocation, and multithreaded
execution.

Fig. 1: System Overview

II. METHOD

a) Method Explanation: RAPID-ASR begins by per-
forming runtime graph analysis on the transformer’s dy-
namic compute graph at inference time, partitioning nodes
into dependency-resolved layers and isolating independent
branches for potential parallel execution; it then employs
branch-aware memory allocation, tagging each tensor with a
combined Layer–Branch–Index identifier and placing it in a
dedicated memory arena to eliminate read-after-write conflicts
and manage lifecycles (including safe dynamic reallocations)
at branch granularity; finally, BEAT’s multithreaded execution
dispatches these branch tasks to a fixed pool of worker threads
with dynamic work-stealing, minimizing synchronization to
layer boundaries and maximizing CPU core utilization without
any intrusive model modifications (Fig. 1).

b) Evaluation Results: To assess RAPID-ASR’s effec-
tiveness, we deployed Whisper and Conformer-CTC ASR
models [4] via TensorFlow Lite 2.17.0 on four representative
CPU platforms (Dimensity 8100, Kirin 980, Google Tensor,

Fig. 2: End-to-end inference latency comparison of Whisper and Conformer.

and Raspberry Pi 4B). Using LibriSpeech test clips (3–15 s at
16 kHz), we measured end-to-end inference latency, memory
allocation performance (including peak arena usage), and total
energy consumption, averaging five runs per configuration on
all available CPU cores. Compared to the standard TFLite
CPU runtime, RAPID-ASR achieves up to 38.5 % reduction
in latency (especially on models with extensive branching),
accelerates memory allocation by up to 15.6× (Fig. 2) while
keeping peak memory overhead below 5 MB, and reduces
total energy consumption by up to 24.6 % through higher
instantaneous CPU utilization over shorter runtimes.

III. CONCLUSION

RAPID-ASR is a lightweight transformer ASR runtime
for mobile CPUs that uses branch-aware graph analysis and
memory isolation to deliver significant reductions in latency,
memory footprint, and energy consumption. Future work will
add adaptive scheduling for shared-resource environments and
dynamic-tensor support on NPUs, further closing the gap to
heterogeneous edge inference.

REFERENCES

[1] M. Abadi, A. Agarwal, and et al., “Tensorflow: Large-scale machine
learning on heterogeneous systems,” Software available from tensor-
flow.org, 2015.

[2] A. Vaswani, N. Shazeer, and et al., “Attention Is All You Need,” in
Advances in Neural Information Processing Systems, 2017, vol. 30.

[3] X. Yang, Q. Qi, and et al., “Towards efficient inference: Adaptively
cooperate in heterogeneous IoT edge cluster,” in Proceedings of the IEEE
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2021, pp. 12–23.

[4] A. Gulati, J. Qin, and et al., “Conformer: Convolution-augmented Trans-
former for Speech Recognition,” arXiv preprint arXiv:2005.08100, 2020.


