On Harnessing Idle Compute at the Edge for
Foundation Model Training

Leyang Xue, Eren Mendi, Ismaeel Bashir and Mahesh K. Marina

The University of Edinburgh

Foundation models (FMs) have become central to modern Al, powering breakthroughs in language, vision, biology, networking,
and software. Models like GPT-4, Stable Diffusion, and AlphaFold are trained on massive datasets and fine-tuned for diverse
downstream tasks. As demand grows for domain specific FMs such as DeepSeek-Coder so does the computing need for training
them. Even with techniques like LoRA and quantized pretraining (e.g., DeepSeek-R1), training these models still requires near-
terabyte GPU memory and costly infrastructure, accessible only to a few large cloud providers, steering us further towards an
already centralized Al ecosystem.

Given this backdrop, foundation model training using edge devices presents a decentralized alternative to the traditional cloud-
based approach. A particularly compelling opportunity is to leverage volunteered compute from edge devices like laptops and
smartphones a la SETI@home. These devices offer growing Al capabilities, are designed to be energy efficient and have high idle
time, making them viable for collaborative training among such edge devices and thereby reduce the cloud dependence. Consumer
hardware such as MacBooks are capable of model finetuning, with Apple’s M4 Max delivering 38 TFLOPS, within an order of
magnitude of datacenter GPUs. With edge devices staying in idle state majority of the time (as high as 75% of the time) including
while charging, this collective compute pool can rival that of the centralized cloud compute infrastructure.

Decentralized foundation model training that harnesses idle compute on edge devices, while promising, needs to meet several
key requirements in order to be viable. These include: (i) it must deliver training performance comparable to cloud based training
in terms of time-to-train, while preserving model accuracy by supporting standard architectures, optimizers, and hyperparameters
(e.g., batch size, sequence length); (ii) it must scale effectively with both model and dataset size to provide the benefits predicted
by modern scaling laws; (iii) it must operate reliably over heterogeneous and highly dynamic edge devices to ensure that training
performance remains robust.

However, current decentralized training methods fall short of satisfying the core requirements outlined above. Even with access to
an unlimited number of edge devices, existing approaches are unable to match the performance and efficiency of cloud-based GPU
training. While edge-oriented optimizations such as gradient compression, asynchronous updates, or homographic computation can
mitigate some bottlenecks, they often come at the cost of reduced model accuracy and architectural compatibility. Fundamentally,
existing methods have two key limitations: (i) High communication overhead: The use of peer-to-peer communication for data
parallelism or pipeline parallelism results in excessive bandwidth demands due to frequent synchronization operations, making it
impractical for low-bandwidth, high-latency environments typical of edge networks. (ii) Coarse-grained fault tolerance: Existing
systems rely on global checkpoints or complete layer recomputation, which are ill-suited for highly dynamic settings where devices
frequently join or leave. These approaches are not scalable and introduce significant delays under device churn.

We propose a novel selective hybrid tensor parallelism (TP) technique, along with a system that flexibly leverages the scale of
edge devices while accounting for their resource constraints and dynamic characteristics. Unlike prior peer-to-peer communication
based schemes, we adopt a parameter server (PS) centric framework, where the PS acts as a central aggregator for synchronization.
This design eliminates redundant data exchange among devices and reduces communication complexity. To adapt tensor parallelism
to the edge setting without sacrificing accuracy, our key insight is that FM training computation is dominated by generalized matrix
multiplication (GEMM) operations and that those GEMM operations can be partitioned into smaller sub-matrix level operations,
such that each device is only responsible for computing a minimal amount of units. This dramatically lowers per-device memory
requirements and significantly reduces communication latency. Each sub-matrix becomes a self-contained unit of work, which
can be independently scheduled, executed, and streamed back to the PS asynchronously. Moreover, this granularity enables fine-
grained fault tolerance, as completed sub-matrix results can be checkpointed and verified independently. Each unit of computation
can be validated upon return, ensuring robustness in the face of device churn or failures while maintaining high throughput and
consistency in the overall training process.

We evaluate our proposed training method against SOTA edge (e.g., DTFM) and cloud based (e.g., Alpa) training methods
through simulation initially, considering training two foundation language models of various sizes of OPT and Llama2. Our results
show that the proposed method not only enables training of larger models than SOTA edge training methods but also achieves the
same training runtime as that of a cloud GPU. Furthermore, it is 4-10X faster than the current edge training methods. In addition,
the design of our system leveraging TP and PS-based architecture allows it to scale to thousands of devices, supporting 2-8X more
devices than the baseline methods. We then perform real world validation with a testbed with small number of smartphones as well
as larger scale realistic evaluation through emulation. For the latter, we built a custom device emulator with a measurement-based
performance model to reflect the runtime accurately, together with a real backend of parameter server. We have designed the
interaction with the PS to allow seamless use of either real or emulated devices.



