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I. INTRODUCTION

Deep learning models often rely on the assumption that test
data follows the same distribution as training data. Let θS
be a model trained on source data DS . During deployment,
the model is evaluated on target data DT , which may follow
a different and unknown distribution. This distribution shift
can lead to significant performance degradation. Test-time
adaptation (TTA) addresses this problem by updating model
parameters during inference, using only unlabeled samples
from DT , without requiring access to the original training
data DS or any ground-truth labels. Due to its unsupervised
nature, TTA is well-suited for on-device adaptation, where user
privacy must be preserved and transmitting raw data to external
servers is often undesirable. However, the constraints imposed
by mobile and edge devices remain underexplored.

II. PROBLEM STATEMENT

In this presentation, we introduce BoTTA [2], our recent
work on evaluating test-time adaptation (TTA) methods in
realistic edge computing scenarios. TTA has gained attention
as a way to improve model robustness under distribution shifts,
but most existing evaluations focus on unconstrained settings
and overlook practical deployment constraints. We identify
four key challenges that affect TTA on an edge device: (1)
A device will typically have access to a limited number of
adaptation samples. This happens for the applications where
the users actively participate in recording data, e.g. taking
photos. as data is generated through user input or automated
sensing, (2) limited number of categories in the adaptation
data, as the user typically has limited exposure to the world,
(3) DT containing diverse distribution shifts, such as snow,
rain or fog in outdoor photos depending on weather, and (4)
overlapping shifts within a sample, for example, a foggy image
also affected by motion blur. These factors are common in
mobile and embedded deployments.

III. EVALUATION SETTINGS

We evaluate several representative SOTA TTA methods
from each class of algorithms: softmax entropy minimiza-
tion [1], sharpness aware entropy minimization [3], pseudo-
labeling based [4], instance-aware batch normalization [5] and
optimization-free [6]. We use two datasets (CIFAR-10C and
PACS) and several model architectures (ResNet-26, ResNet-
50, ViT). We test both in the server and run on real hardware
platforms including Raspberry Pi 4B and Jetson Orin Nano.
Alongside accuracy measured on different test datasets to
evaluate the generalization of the adapted models, we report
system-level metrics such as peak memory usage or computing
power utilization.
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Fig. 1: (a) Test accuracy on DT (CIFAR-10C Gaussian Noise domain,
severity: 5) using ResNet-26 architecture. While accuracy increases with
the increasing |∆T | (number of samples in on-device adaptation dataset
(∆T ⊆ DT )), with data size below 64, none of the TTA methods works
well. (b) peak memory consumption on Raspberry Pi-4B (8GB).

IV. EXPERIMENTAL RESULTS

Our results show that many existing methods struggle when
exposed to edge-specific constraints. For example, the most
accurate method in Figure 1a - SHOT achieves 1.74× accuracy
gain when |∆T | = 256 whereas it achieves 2.74× gain when
using a larger adaptation dataset (|∆T | = 8192). Through the
experiment on the real-life testbed, we observed that most of
the TTA algorithms consume a significant amount of memory.
Notably, in the experiments on Raspberry Pi in Figure 1b
the most accurate TTA method across many settings, SHOT,
consumes higher (1.08×) peak memory compared to the base
strategy of ‘no adaptation.’. We also explore the idea of
periodic adaptation instead of adapting on every inference step,
which shows promise in balancing performance with practical
feasibility. Through presentation, we aim to highlight open
challenges and support the development of adaptation methods
better suited for edge deployment.
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